If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2+10q-56=0
a = 1; b = 10; c = -56;
Δ = b2-4ac
Δ = 102-4·1·(-56)
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-18}{2*1}=\frac{-28}{2} =-14 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+18}{2*1}=\frac{8}{2} =4 $
| 2.10m+5=49 | | 5x+2=28-7x | | 1.5x+8.25=3+3.25x | | N^2+6n-12=2n+7 | | .25x=3*650 | | .25/3=650/x | | 7*x=13 | | 2a+3 +2a=4 | | .25x=2400 | | n-(-13)=253 | | n+(-3)=30 | | 61-1x=9x-101 | | 4x-15=20-1x | | 6y=9/24 | | c/6+16=23 | | c+22/6=6 | | 46=u/3+39 | | 26=42-2j | | (√x+3)=x-9 | | 16x-14=15x+14 | | -5x+25=-75 | | 6x+50=230 | | 6x+50=240 | | 2x-16=14x+2 | | 11=s/4+7 | | 4x-70=90 | | (y-4)(y-4)-7(2-y)=(y+5)(y-2) | | 6x=13=25 | | 30x+51=111 | | 1/4(3x-4)-1/5=1/4x-3/10 | | 36x+26=36 | | 6-11x=-5 |